
JOURNAL OF APPLIED POLYMER SCIENCE VOL. 15, PP. 277-292 (1971) 

The Relation Between Melt Flow Properties and 
Molecular Weight of Polyethylene 

SHIGERU SAEDA, JUNJI YOTSUYANAGI, and 
KINYA YAMAGUCHI, Central Research Laboratory, 

Showa Denko, Co., Ltd., Ota-ku, Toyko, Japan  

Synopsis 
The non-Newtonian behavior of commercial linear polyethylene samples and their 

fractions were studied a t  190OC. The viscosity q versus shear rate 9 curves of whole 
polymers could be superimposed onto a single master curve despite the variations of 
their molecular weights and molecular weight distributions. For fractions, however, 
the same master curve was inapplicable, and the sensitivity of the viscosity to shear rate 
was found to be greater than those of the whole polymers. The zero-shear viscosities 
qo of fractions were related to the 3.42 power of the weight-average molecular weight 
M ,  as follows: 

70 = 2.39 X 10-'5M,3.4e. 

For whole polymers, the zero-shear viscosities were found to be considerably higher at the 
same M ,  and markedly lower a t  the same z-average molecular weight M ,  than those of 
the fractions. Thus, it  was concluded that 7 0  corresponds to an average of molecular 
weight between M, and M,. It was found that the molecular relaxation time r is pro- 
portional to MZ5.3 for whole polymers and to  OM, for fractions. Using these relations 
it was possible to relate the flow ratio, the ratio of flow rates a t  two different shear 
stresses, with the molecular weight distribution. 

INTRODUCTION 

The non-Newtonian behavior of polymer melts has been one of the most 
important subjects in polymer science and technology. A great deal of 
experimental results has been accumulated' and a few theories have been 
presented as well. None of the present theories, however, seems to be 
perfect in describing the complicated behavior of the various polymer 
systems. It is our present purpose to establish experimentally correlations 
between the rheological parameters obtained from the non-Newtonian 
flow behavior and some molecular weight parameters. 

According to Bueche12 who considered a single polymer chain, and 
Crae~s ley ,~~*  who postulated that two polymers can be entangled with each 
other when they approach within a limited distance, the reduced viscosity 
q/qo  of the polymer is expressed as a function of shear rate + and molecular 
relaxation time r.  It is important to note that the two theories concluded 
that 11/70 should be a function of +r. In fact, both Bueche and Harding5 
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and Sabia6 showed experimentally that the log q versus log y relations can 
be superimposed onto a single master curve. 

In  this paper, attempts are made firfit to establish the master curves of 
viscosity for fractionated polyethylenes aa well as commercial whole 
polymers over a wide range of molecular weights and molecular weight 
distributions, and to study the difference of the shape between them with 
the molecular weight distribution. Using the master curve, r and qo 
are obtained as the shift factors. The molecular weight dependence of 
these rheological parameters will be discussed. 

EXPERIMENTAL 

Samples 

The samples used in our experiments are listed in Tables I and 11, 
together with their characterization data. 

Samples of series A are the Phillips-type commercial linear polyethylenes 
with broad molecular weight distributions, and B samples are those with 
moderate molecular weight distributions. Samples C are the Phillips- 
type ethylene-butene copolymers with broad molecular weight distribu- 
tions. 

Samples F-1 to F-4 are fractions prepared from A-2 by column elution 
method. In  this case, fractions from two parallel runs were combined to 
obtain large enough samples for the melt viscosity determinations. Sam- 
ples F-5 to F-10 are fractions prepared from A-7 by a large-scale column 
fractionation technique. The molecular weight distributions of these 
fractions were confirmed to have M w / M n  = ca. 1.25 and were sufficiently 
narrow compared with those of the whole polymers, as shown in Table 11. 

Fractionations and Molecular Weight Determinations 

Ten samples were fractionated by column elution technique according 
to the method of Henry' to determine the molecular weight distribution. 
Ethyl Cellosolve and xylene were used as the poor solvent and good solvent 
system, a t  127'C. The molecular weights of the fractions were determined 
from the inherent viscosity according to the following empirical relation8 
based on light scattering measurements: 

( q  1 = 5.60X 10-466w0.694 ' for fractions (1) 

All the samples fractionated were found to have logarithmic normal 
distribution fun~t ions .~  The number-average molecular weight M,, the 
weight average molecular weight Mw, and the z-average molecular weight 
M ,  of the whole polymers which were fractionated were calculated from 
the summation method. 

To get a large amount of fraction, 250 g of sample A-7 was fractionated 
by a large-scale column fractionation technique,1° in which a column with 
a length of 2 m and 10 cm in diameter was used. A system of butyl Cello- 
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TABLE I1 
Characterization Data of Fractions 

Samplee  TI]^ MwC X lo-' M,* x 10-4 M,/M, m, poise 

F- 1 
F-2 
F-3 
F-4 
F-5 
F-6 
F-7 
F-8 
F-9 
F-10 

0.523 
1.09 
1.62 
6.53 
0.228 
0.482 
0.943 
1.36 
2.55 
4.79 

1.92 
5.38 
9.73 

0.604 
1.74 
4.47 
7.51 

72.4 

18.2 
44.0 

~ 

1.15X loe 
3.9X 108 
2.95X 10' 
2.55X 1'. 

0.495 1.22 2.29 
1.40 1.24 6.71XlO 
3.58 1.25 2.80X lox 
5.92 1.29 1.35X lo4 

14.7 1.29 1. sox 106 
9. lox lob 

~~ 

a F-1 to F-4 are fract,ions from A-2; F-5 to F-10 are fractions from A-7. The values 
of M ,  from osmotic pressure of F-7, F-8, and F-9 were 3.59 X lo4, 5.82 X lo4, and 14.1 x 104, 
respectively. Samples F-1 to F-6 were measured by a cone-and-plate viscometer, 
samples F-7 to F-10 by an extrusion rheometer. 

b Measured in tetralin a t  13OoC, 0.1% concentration. 
OFrom 1111 with eq. (1). 
d From vinyl unsaturation. 
e Extrapolated value. 

solve and xylene was used at  125°C in this case. The values of M ,  from 
inherent viscosities and those of M ,  wherever possible from infrared mea- 
surements of terminal vinyl unsaturation" are indicated in Table 11. 
The values of M, from the infrared method showed an excellent agreement 
with those from osmotic pressure measurement, as indicated in the footnote 
of Table 11. 

For whole polymers, the following empirical relation established before* 
between ( q  f and M ,  from light scattering was employed in estimating the 
viscosity-average molecular weight M,: 

( q )  = 5.48X 10-4M,0.689 for whole polymers (2) 
The values of M ,  from inherent viscosit'es are not much different from 
M ,  from direct measurement of light scattering for whole polymers, as 
indicated for some samples in the footnote of Table I. Therefore, in this 
paper the values of M ,  are treated as M,. 

Measurements of light scattering were performed by a Shimazu light- 
scattering photometer PG-21, in a-chloronaphthalene at 125OC, while 
M ,  values were measured with a membrane osmometer Model 501 pro- 
duced by Hewlett-Packard, in Tetralin at 130°C. The inherent viscosities 
were measured at 130°C in Tetralin at  about 0.1% concentration, with a 
Cannon-Fenske-type viscometer. 

Melt Viscosity 
Most experiments were performed with a cone-and-plate-type viscom- 

eter, Model V-1205Al manufactured by Rion Co., Ltd. Both cone and 
plate are set in a small electric furnace equipped with a Thermistor tem- 
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perature-regulating system. The angular velocity o was measured while 
a given torque M was applied to the lower plate, in keeping the upper cone 
at  a fixed position. The viscosity q,  the shear stress S, and the shear rate 
1 were calculated by the following relations: 

S = 3M/2?rR3 (3) 

where 8 ie the angle between the cone and the plate and R is the radius of 
the plate. A cone and plate set with R = 6 cm and B = 5" was mainly 
used. The other sets such as those with R = 6 cm and B = 2" or with 
R = 3 cm and B = 5" were also used in a few cases. Viscosities from each 
cone and plate set agreed with each other within the experimental error. 

All the measurements were carried out at a temperature of 190°C. 
The correction for edge effect was not applied, because it causes no serious 
error in this type of viscometer. 

A gas-operated extrusion-type viscometer, Takara Flow Tester Model 
FT-203, was also used in some cases to measure the viscosity a t  higher 
range of shear rate. Shear stress and shear rate were calculated by the 
familiar relation as follows: 

S = PR/2L (6) 

-i = 4Q/?rR3 (7) 

where P is the applied pressure, Q is the volumetric flow rate, and R and L 
are the radius and length of the capillary, respectively. The capillary end 
correction according to Bagley12 and the Rabinowitsch c~rrection'~ were 
applied for whole polymers. A series of capillaries 0.489 mm in diameter 
and with length-to-diameter ratios of 5, 10, and 15 were used in this case. 

For fractions, a capillary 1.092 mm in diameter and with a length of 
32.76 mm was used without corrections. 

RESULTS AND DISCUSSION 
Master Curve 

The variation in viscosity q with shear rate .i is illustrated in Figure 1 for 
several whole polymers, i.e., A-2, B-1, and C-1. As expected, the viscosity 
increases as the molecular weight becomes larger. The slope of each curve 
at  the same shear rate, which is taken as a measure of the non-Newtonian 
behavior, also increases with the molecular weight. Both viscosity data 
obtained by a cone-and-plate viscometer and a gas-operated extrusion- 
type viscometer are included in the same figure. It is interesting to note 
that the viscosity-shear rate relations derived by these two different 
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I 
3 2 1 0 1 2 3  

Log ii 

Fig. 1. The variation of viscosity with shear rate for whole polymers at 190'C: (6) 
measured by cone-and-plate viscometer; (0) measured by extrusion rheometer. 

- 3  ' 
- 4  -3  - 2  - 1  0 1 2 3 

Fig. 2. Viscosity master curve of whole polymers. 

Log 8 2  

methods in the low shear and in the high shear regions, respectively, lie 
on a single smooth curve for a given polymer sample. Although these are 
not shown in the figure, viscosities of samples B-5 and C-8 were also mea- 
sured by the two viscometers for about four decades of shear rate. The 
other whole polymers were measured by a cone-and-plate viscometer. 

Following the method of Bueche and Harding5 and Sabia16 the observed 
log q versus log + relations of commercial whole polymers were superim- 
posed with some appropriate shifting along each axis. Within the experi- 
mental error, a composite master curve was obtained as shown in Figure 2. 
The relation can be represented satisfactorily by the following equation, 
of the same type as that used by Sabia6: 

log ( I t / f o )  = [ ( ~ / ~ o )  - */31 log [1 + ( ~ 4 1  (8) 

The situation is rather different for the fractionated polymers. In 
Figure 3, the results obtained for the fractions in the F aeries are shown. 
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Fig. 3. Variation of viscosity with shear rate for fractions at 190°C. 

Their viscosities reach easily to  their Newtonian region in the measurable 
shear rate range, in contrast to  the curves of the whole polymers shown 
in Figure 1. The weight-average molecular weights of samples F-3 and 
B-1 are 9.73 X lo4 and 10.1 X lo4, respectively, being almost identical 
with each other. Nevertheless, these two samples differ very much in 
their flow behavior: while B-1 shows quite a drastic non-Newtonian 
flow, that of F-3 is approximately Newtonian. 
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I 

1 2 3 4 5 6 7 8  
Log kie 

Fig. 5. Sensitivity of viscosity to shear rate with various molecular weight distributions. 
Abscissa is shifted arbitrarily for the convenience of drawing. (a): A, Master curve for 
whole polymers; B, fraction with M ,  = Fj.5X 104, M J M ,  = 1.9, from data of Schrei- 
ber16; C, master curve of fractions with M , / M ,  = ca. 1.25, with plots of F-8; D, mono- 
disperse polystyrene.14s16 (b): Curves of (a) shifted horizontally to their closest ap- 
proach to clarify their difference in shapes. 

The superposition of flow curves was also possible for fractions as for 
whole polymers. A reduced flow curve was obtained by plotting the data 
in the form 7/70 versus voMm+, as shown in Figure 4. This means that 
the shift factor r is proportional to 7oMw in accordance with the results 
of Ballman and Simon14 and Wyman, Elyash, and Frazer15 for monodis- 
perse polystyrenes. At the same time, this supports the theoretical predic- 
tion of Bueche2 and Grae~s ley .~ ,~  However, we must note the limitation of 
Figure 4 that the range of 7/70 is very small. This is due to the fact that 
the polyethylene fractions easily break into the melt fracture region at  
low shear rates and in the proximity of the Newtonian region. 

Comparing the two master curves for whole polymers and fractions, it 
is interesting to  note here that the shapes of the two master curves are 
considerably different from each other, as clearly indicated in Figure 5. 
The sensitivity of the viscosity with shear rate for the fractions is greater 
than for the whole polymers. The same phenomena were already observed 
for polydisperse and anionically polymerized nondisperse polystyrenes. l 4 , I 5  

The data of Schreiberl8 on linear polyethylene fractions with M, = 
5.5X104 and M w / M ,  = 1.9, which were prepared by a large-scale coacerva- 
tion method, are also indicated in Figure 5. It is interesting to note that 
the viscosities of his fraction are less sensitive to the shear rate than our 
fractions, having narrower molecular weight distributions of RI , /M,  = 
ca. 1.25. The sensitivity of our fractions, on the other hand, is smaller 
than that of the monodisperse polystyrene, 14-15  which was in accordance 
with the theoretical curve for monodisperse polymers proposed by 
Graessley. 
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It is concluded, therefore, that the shape of the flow curves changes 
considerably with the sharpness of the molecular weight distribution for 
polyethylenes, especially in the range of narrow molecular weight dis- 
tributions. 

In  cases of commercial linear polyethylenes with M,/M, greater than 
about 4, however, the effect of molecular weight distribution on the shape 
of the flow curves seems very small, as shown in Figure 2. The results are 
in agreement with the calculation of Graessley4 in that the change of the 
shape of the flow curves with molecular weight distribution is large in the 
range of molecular weight distributions close to monodisperse, and gradually 
becomes smaller as the distribution broadens. In fact, the theoretical 
flow curves derived from Graessley's theory for some whole polymers shown 
in Table I were found to be almost the same." Thus, eq. (8) can be used 
in practice for ordinary commercial linear polyethylenes. 

The values of qo and r for whole polymers obtained from the above eq. 
(8) are listed in Table I. 

The values of qo of the fractions were obtained directly from their New- 
tonian region. In  the case of F-4 and F-10, where the viscosities did not 
reach to their Newtonian rcgion, qo values were obtained by use of the 
following empirical relation of Spencer and Dillon'* : 

1/11 = l / ~ o  + KS (9) 
where K is a constant. 

Zero Shear Viscosities of Fractions 

The zero shear viscosities of the fractions are plotted against the weight- 
average molecular weights in Figure 6. Both the ordinate and abscissa 
are arranged in the logarithmic scale. The plots of ten fractions studied 
lies on a straight line with a slope of 3.42, which is very close to the theo- 
retical value of 3.5, as shown in the figure. The straight line can be ex- 
pressed by the following equation. 

TO = 2.39X 10-5Mm3.42 (10) 

Schreiber, Bagley, and Westxg have already studied the relation between 
vo and M, for fractions of Phillips-type linear polyethylene prepared by a 
large-scale coacervation method. Their results are also shown in the same 
figure. In the region of low molecular weight the discrepancy is small, but 
a t  higher molecular weights, their viscosities are considerably higher than 
the present results, which produced their higher exponent of 4.10. This 
disagreement may be due to the fact that their fractions show a dependence 
of polydispersity on molecular weight. As Blackmore and Alexander" 
indicated, the fractions from the large-scale coacervation method have 
very high values of M,/M, (ca. 8 for the highest molecular weight frac- 
tion) at high molecular weight, though gradually the value becomes smaller 
with decreasing molecular weight. This seems to be the reason for their 
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higher exponent, because the broader the molecular weight distribution, 
the higher become the zero-shear viscosities at the same M,, as will be 
shown in the later section. Our fractions obtained from the column elution 
method have very narrow molecular weight distribution (M,,,/M, = ca. 
1.25), and the distributions have no serious molecular weight dependence, 
as shown in Table 11. 

The data of TungZ1 for Ziegler-type polyethylene fractions prepared 
by a cowervation and an elution method are also shown in Figure 6. The 
viscosities are about half a decade greater than ours, although the slope 

7 

6 

5 

4 

9 3  

32 
0 

1 

0 

-1 

-2 

-3 

Fig. 6. Zeroshear viscosities of fractions vs. M ,  at 190°C: A, n-alkane, data of Doo- 
little23; B, data of Schreiber and co-workerslg; C, data of Tung.21 

is almost the same. The reason for the disagreement in viscosities is not 
clear at  present, because he did not state clearly the polydispersity of his 
fractions. But the fact that his viscosities of fractions at 150°C agreed 
with those of the whole polymers of Peticolas and Watkins22 at the same 
temperature suggests that the molecular weight distribution of their frac- 
tions might be broader than ours. In addition, if his fractions have long- 
chain branches as suggested in his paper, the direct comparison to our 
linear fractions is inappropriate. 

With the viscosity data of n-alkanes of Doolittle,23 the entanglement 
molecular weight M E  of polyethylene at 190°C can be obtained from the 
intersection of the relationships for n-alkane and linear polyethylene frac- 
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tions, as shown in Figure 6. The value thus obtained was M, = 3375, 
which is rather lower than that obtained by Schreiber and co-workers. l9 

Zero-Shear Viscosities of Whole Polymers 

The zero-shear viscosity data of whole polymers are plotted against 
M ,  values in Figure 7. There is a clear trend that the sharper the molecu- 
lar weight distribution, the smaller is the vo at a given value of M,, in 
agreement with the result of McGlamery and Harban.24 The samples of 
the F series with a molecular weight distribution of M,/M, 1.25 fall 
on the lowest line in the figure. The second lowest line corresponds to the 
samples with M,/M, = 4-5, which are chosen from the B series. Sam- 
ples of the A and C series fall on the highest line. The molecular weight 
distribution of the A and C series was found to be 7-19 in terms of M,/M,. 
These experimental observations imply that the 7 0  is related to some 
higher average molecular weight than M,. 

The M ,  values of whole polymers in Figure 7 were obtained from the 
experimental relationship between intrinsic viscosity and Ad, from light 
scattering, eq. (2), which is known to be dependent on the molecular 
weight distribution. In Table I, the M ,  values calculated from frac- 
tionation data by summation method and direct measurement of light 
scattering are also shown wherever possible. The Ad, values from these 
three sources agree with each other within about 10%. Hence the results 
in Figure 7 would hold true if all the samples were measured by light 
scattering. 

The samples of the C series have 1-2 ethyl branches per 1000 carbon 
atoms. As shown in Figure 7 and in the following figures, the C polymers 
do not deviate from the A polymers. Thus, it is concluded that a few 
ethyl branches in polyethylenes have no appreciable effect on melt be- 
havior, as pointed out by S ~ h r e i b e r . ~ ~  

; 
3 
ol 

6 
Log Mw 

Fig. 7. Zero-shear viscosities of polyethylenes vs. M, with different molecular weight 
distributions at 190°C: A, C, broad MWD; B, moderate MWD; F, fractions. 
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Fig. 8. Zero-shear viscosities of polyethylenes vs. M .  with different molecular weight 
distributions at 190°C: A,C, broad MWD; B, moderate MWD; F, fractions. 

The two straight lines drawn in Figure 7 give us the following empirical 
qo versus M ,  relations for samples with moderate molecular weight dis- 
tributions (B) and those with broad molecular weight distributions (A,C) : 

qo = 1.20X10-14M,3.78 for B ( 1 1 )  

qo = 3.02X10-16 Mw3.w for A,C (12) 

The so-called 3.4 exponent rule holds only for the fractionated samples. 
The higher exponents for the two whole-polymer series apparently are 
attributable to the fact that the molecular weight distribution widens in 
general as the molecular weight itself increases.26 

The dependence of qo on the z-average molecular weight M ,  was also 
studied. The log qo versus log M ,  relations for some linear polymers are 
shown in Figure 8. The M ,  values of the whole polymers were determined 
from their fractionation data by the summation method. Those of the 
fractionations were obtained with the relation M,/M,  = M , / M ,  (as- 
suming the average value of M , / M ,  to be 1.25), which holds for the log 
normal distribution of molecular weight, since the fractionation of a 
fraction obtained by column elution method showed that its distribution 
function was also a log normal type as its mother polymer.27 The relative 
positions among the aforementioned three groups of linear polyethylenes 
are reversed, as compared with those in Figure 7. This undoubtedly 
indicates that the zero-shear viscosity qo can be related to an average 
molecular weight between Ma and M,. 

Fox and Flory28 and Fox and Allen29 have presented the following relation 
between qo and M ,  for polyisobutylene and polystyrene systems : 

qo = KM,3.4 K = const. (13) 

The same rule is apparently inapplicable to the polyethylene systems with 
very broad molecular weight distributions. 
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Our experimental results seem to support the proposal of Bueche" 
and Graessley4 that the zero shear viscosity is related to some average 
molecular weight M ,  according to the following relation: 

T o  = K'M,3.4 K' = const. (14) 

where M ,  < M ,  < &I,. The M ,  is much closer to M ,  when the molecular 
weight distribution is narrow and approaches M, as the molecular weight 
distribution widens. 

Molecular Relaxation Time 

The relation of T and v0 is shown in a double-logarithmic scale in Figure 9. 
The values of T of group B with moderate molecular weight distributions 
still remain in the region below those of A or C with broader molecular 
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Fig. 9. Molecular relaxation times of polyethylenes with different molecular weight dis- 
tributions vs. zeroshear viscosity at 190OC: A,C, broad MWD; B, moderate MWD. 
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Fig. 10. Molecular relaxatioii times vs. M ,  for polyethylenes with ditrerent molecular 
weight distributions at 190°C: A$, broad MWD; B, moderate MWD. 
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weight distributions. This leads us to the conclusion that the molecular 
relaxation time relates to a molecular weight of higher moment than that 
for to. 

The relation of log T versus log M ,  is shown in Figure 10, where all 
samples of the A, B, and C series can be arranged on a single straight line. 
In  the range of the molecular weight distributions studied, the molecular 
relaxation time T can be best represented by the following equation: 

= 5.59x10-31~,5~30 (15) 

This result means that the flow curves of whole polymers are shifted pro- 
portional to the 5.3 power of M ,  along the abscissa. Although there is no 
theoretical background to explain the results at the present time, it is 
interesting to compare them with the result of fractions that show that 
the shift factor T is proportional to q&, or to M,4.42 using eq. (10). 

Flow Ratio 

The flow ratio, the ratio of two flow rates at high and low shear stresses 
obtained by an extrusion-type rheometer, is often used as a practical me& 
sure of the molecular weight distribution. Some experimental efforts 
were made to relate the flow ratio and the parameter of molecular weight 
distribution. However the results are not in agreement with each other. 
Martinovitch and ~o-workers~~ showed that the flow ratio is linearly re- 
lated to M,/M,; on the other hand, C ~ t t a m ~ ~  claimed a linear relation of 
flow ratio and M,. S a k a m ~ t o ~ ~  obtained a linear relation for the logarithm 
of flow ratio and M,/M,. 

Our result shown in Figure 10 and eq. (15), together with the master 
curve, can be used to have a further insight into the flow ratio. 

When the master curve of the whole polymer, eq. (S), is rewritten in 
terms of shear stress S, using the relation q = S/+, we can easily obtain 
the following: 

log (q/vo) = [(q/qo) - '/a1 1% [1 -!-  oh)"' (T/'?o's)~/']. (16) 

Fig. 11. Schematically drawn viscosity master curve in terms of shear stress. 
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t l %  

Fig. 12. Variation of flow ratio F.R. with T / V O  in the case of melt indexer, with 2.16 kg 
Values of 4.64 and 61.9 indicate minimum and maximum flow ratios, and 10 kg weigh&. 

respectively. 

Here it must be noted that now r/qo, instead of r in eq. (S), is the shift 
factor of the abscissa. If two flow rates are denoted as Q1 and Qz at arbi- 
trarily chosen pressures PI and P2, the flow ratio F.R. is 

F.R. = Qi/Qz; (17) 

(18) 
Because Sl and Sz are known, we can obtain the ql/qz values from arbi- 
trarily chosen 7/70 values and the master curve based on shear stress, 
eq. 16, as shown schematically in Figure 11. We can thus obtain pairs 
of F.R. and r/qo from eq. (18). The relation between log F.R. and log 
r/qo is shown in Figure 12 for the case of a melt indexer where the weights 
were chosen as 2.16 and 10 kg, respectively. 

From the master curve it can be expected that F.R. remains constant in 
the Newtonian region because the viscosity does not change with shear 
stress. At very high values of r/q0, q1/q2 becomes constant because the 
slope of the master curve approaches a straight line, so that the F.R. 
value also becomes constant. The important region for practical in- 
terest lies between the above two extremes. There is a region where log 
F.R. versus log r/qo is approximated by a straight line. The equation for 
it may be written as: 

and when the same capillary is assumed, from eq. (6) and eq. (7), 

F.R. = (SdSI) (IlllrlZ) = (PZ/Pl> (TI/TZ). 

F.R. = K1(r /q0 )~  K1, a! = const. (19) 

F.R. = Kp(MZ5.3/M,3.4)a K,, a! = const. (20) 

Combining eq. (19) with eqs. (14) and (15), we obtain 

This implies that the flow ratio is related to a factor of molecular weight 
distribution (MZ5.3/M ,".") that is particularly sensitive to the high molecular 
weight fraction of polymers. This result is close to that of Sakamoto. 
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It must be noted here that because eq. (15) holds only for whole 
polymers with moderate and broad molecular weight distributions, eq. (20) 
is only applicable to the polymers of the same range of molecular weight 
distribution, i.e., M , / M ,  = 4-19. 

In  the case of fractions, however, the situation is rather different. As 
shown in the earlier section, the superposition of flow curves of fractions 
were attained by setting r =  OM,. In  this case, the F.R. value must be 
a function of M ,  only instead of M, and M ,  in eq. (20). If the master 
curve for monodisperse polymer is established, the flow ratio can be used 
to estimate the molecular weight instead of the molecular weight distri- 
bution. 
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